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Wavefunction overlap generates hierarchies

 F = wave function @ IR brane :

F ~ (TeV/Planck)2c-1

F ~ √(1-2c)

c > 1/2,          c = bulk mass 

c < 1/2
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RS has a flavor problem

LR chiral contributions to CPV in K-K mixing
generically require mKK  > 11 TeV +

But there is also fine-tuning in EWSB…

+ terms and conditions apply 

(scalar bulk Higgs with less perturbative control m > 5 TeV possible)

Csaki, Falkowski, AW



RS and little hierarchy problem

Precision electroweak data suggests 
 o light Higgs (mH < 200 GeV)
 o (S,T,U,…) new contributions Λ > 5 TeV 
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Precision electroweak data suggests 
 o light Higgs (mH < 200 GeV)
 o (S,T,U,…) new contributions Λ > 5 TeV 

m2
H ∼ −3 λ2

t
1

8π2
Λ2

Large UV sensitive contribution to Higgs mass.
Top loops e.g. induce

    

Significant fine-tuning if not taken care of:
RS with Higgs on the brane or scalar bulk Higgs
suffers from little hierarchy problem!



Solution: pGB Higgs models

Simple model with 
  o custodial symmetry
  o A5 zero mode ∈ SO(5)/SO(4) = Higgs   
  o small corrections to S,T,U, Zbb

Agashe, Contino, Pomarol 05
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y = Ruv y = Rir

SO(4)xU(1)xSU(2)xU(1)Y

Dual to pGB composite
Higgs (Georgi, Kaplan ’83)



Calculable radiative EWSB

A5 = Higgs : Non-local Coleman-Weinberg 
induces potential and <A5>≠0

UV finite, depends on 5D fermion mass sector

V (v) =
3

32π2

∫ ∞

0
dtt [−4 log ρt(−t) + 2 log ρW (−t) + log ρZ(−t)]
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Fermion Masses in Gauge-Higgs 
models

A5 = Higgs being a gauge field couples only to 
fields in the same multiplet.
 
Add boundary mixing terms: 
Zero modes lives in multiple representations 
                → kinetic mixing.

Yukawa = bulk gauge coupling g*



• This zeroth-order picture is modified by the mass terms on the IR brane that mix
different 5D multiplets. These mass terms are necessary to arrive at acceptable phe-
nomenology. First of all, since the Higgs field is a component of Az, it only couples
5D quarks from the same bulk multiplet. In order to obtain non-zero quark masses,
at least some of the zero modes should have non-vanishing components in more than
one multiplet. The boundary mass terms play a similar role as the Yukawa couplings
in RS but, as we discuss later, there are some important differences.

• At the end of the day, the boundary conditions to SO(5) multiplets should be such
that SO(5) is broken on both the UV and the IR branes. The Wilson-line breaking is
a non-local effect that is operating only when the gauge symmetry is broken on both
endpoints of the fifth dimension. If either the UV or the IR boundary conditions are
SO(5) symmetric, the Wilson line can be rotated away, and the SM quarks do not
acquire masses.

We move to discussing three specific realizations that satisfy the above requirements.

3.1 Spinorial

The spinor representation 4 is the smallest SO(5) representation. Although models with
the third generation embedded in the spinorial representation have severe problems with
satisfying the precision constraints on the Zbb vertex, we do include it in our study. The
reason is that this model is the simplest (it has the minimal number of bulk fields), and its
flavor structure is most transparent. Furthermore, almost identical flavor structure appears
in the fully realistic models.

We consider 3 bulk SO(5) spinors for a single generation of quarks, Ψq, Ψu, Ψd (recall
that we omit the generation index; all fermionic fields should be read as three-vectors in the
generation space). Under the SU(2)L×SU(2)R subgroup it splits as 4 → (2, 1) + (1, 2), so
that an SO(5) spinor contains both SU(2)L doublets and singlets. Roughly, Ψq will provide
the zero mode for the left-handed quark doublets, while Ψu, Ψd for the right handed up and
down-type quarks. To obtain the SM zero mode spectrum we impose the following boundary
conditions

Ψq =




qq[+, +]
uc

q[−, +]
dc

q[−, +]



 Ψu =




qu[+,−]
uc

u[−,−]
dc

u[+,−]



 Ψd =




qd[+,−]
uc

d[+,−]
dc

d[−,−]



 (3.6)

with the notation that the first component is a complete SU(2)L doublet, while the lower
two components are the two components of an SU(2)R doublet, qc = (uc, dc). Our model is
similar to the one in ref. [17], even though we assign different IR boundary conditions for
the SU(2)R doublets1.

1In particular, Ψq and Ψu alone would be equivalent after interchanging M̃u → 1/M̃u. With Ψd included,
the two models are not equivalent.

12

Mass terms from gauge interactions

Some freedom to embed fermion content
Example here: 4 (spinor) of SO(5)

1)               = chiral zero modes     

 

Csaki, Falkowski, AW
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We denote the left-handed chirality modes of a Dirac field by χ, while the right-handed
chiralities by ψ. For example χqq stands for the left-handed chirality SU(2)L doublet con-
tained in Ψq. The above set of parity assignments ensures the zero modes with SM quantum
numbers in χqq , ψuc

u
and ψdc

d
. However, at this point there would be no Yukawa couplings

at all, since the zero modes live in completely different bulk multiplets. To obtain non-zero
Yukawa couplings, at least some of the zero modes should have non-vanishing components
in more than one multiplet. This can be achieved via the following IR localized mass terms:

LIR = −
(

R

R′

)4 [
m̃uχqqψqu + m̃dχqqψqd

+ M̃u(χuc
q
ψuc

u
+ χdc

q
ψdc

u
) + M̃d(χuc

q
ψuc

d
+ χdc

q
ψdc

d
)
]

(3.7)
Here m̃u,d, M̃u,d are dimensionless 3 by 3 matrices, which will play the similar role as brane-
localized Yukawa couplings in the original RS. All flavor mixing effects in this model originate
from the IR localized mass terms. The effect of m̃u is to rotate the doublet zero mode partly
into the Ψu field, while m̃d rotates it partly into Ψd. At the same time M̃u will rotate the
singlet up-type zero mode partly into Ψq, and similarly M̃d will rotate the down-type zero
mode into Ψd. The boundary mass terms respect the SU(2)L×SU(2)R of the IR brane, but
they break SO(5). In the limit m̃u = M̃u and m̃d = M̃d SO(5) invariance is restored in the
IR boundary conditions, and the zero mode quarks become massless.

In the presence of the boundary terms the IR brane boundary conditions will be modified
as

ψqq = −m̃uψqu − m̃dψqd

χqu = m̃†
uχqq

χqd
= m̃†

dχqq (3.8)

ψQq = −M̃uψQu − M̃dψQd

χQu = M̃ †
uχQq

χQd
= M̃ †

dχQq (3.9)

3.2 Fundamental + Adjoint

As we explain later, the model with fermions in the spinor representation turns out to have
incurable problems: the Higgs mass tends to be too light, and there is a large irreducible
correction to the Zbb̄ vertex. The situation is improved in models where the doublet quarks
are embedded in the fundamental representation of SO(5). The original motivation for
considering the fundamental represenation was the realization [18] that it is possible to
greatly reduce the corrections to the Zbb̄ vertex by using an embedding of the SM fermions
into the custodially symmetric SU(2)L×SU(2)R model under which the bL is symmetric
under SU(2)L ↔SU(2)R. The simplest implementation of this Z2 symmetry is when the left
handed quarks are in a bifundamental under SU(2)L×SU(2)R, while tR is a singlet.

13

3) SO(4) invariant brane mixings mix multiplets

M̃u

Csaki, Falkowski, AW
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as

ψqq = −m̃uψqu − m̃dψqd

χqu = m̃†
uχqq

χqd
= m̃†

dχqq (3.8)

ψQq = −M̃uψQu − M̃dψQd

χQu = M̃ †
uχQq

χQd
= M̃ †

dχQq (3.9)

3.2 Fundamental + Adjoint

As we explain later, the model with fermions in the spinor representation turns out to have
incurable problems: the Higgs mass tends to be too light, and there is a large irreducible
correction to the Zbb̄ vertex. The situation is improved in models where the doublet quarks
are embedded in the fundamental representation of SO(5). The original motivation for
considering the fundamental represenation was the realization [18] that it is possible to
greatly reduce the corrections to the Zbb̄ vertex by using an embedding of the SM fermions
into the custodially symmetric SU(2)L×SU(2)R model under which the bL is symmetric
under SU(2)L ↔SU(2)R. The simplest implementation of this Z2 symmetry is when the left
handed quarks are in a bifundamental under SU(2)L×SU(2)R, while tR is a singlet.
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M̃u

Csaki, Falkowski, AW



mSM
u =

g∗v

2
√

2
Hqfq(m̃u − M̃u)f−uHu

mSM
d =

g∗v

2
√

2
Hqfq(m̃d − M̃d)f−dHd

Effective mass terms pGB model



Effective 4 fermi operators

Integrating out the 
KK gluon

Csaki, Falkowski, AW
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where gs∗ is the bulk SU(3) gauge couplings, and γ(c) =
√

2x1
J1(x1)

∫ 1

0 x1−2cJ1(x1x)dx ≈
√

2x1
J1(x1)

0.7
6−4c .

2

The couplings would be flavor universal if fx ∼ 13×3. However, this not the case in the RS
scenario where the fx are non-degenerate. This is the main source of flavor violation in RS.
Going to the mass eigenstate basis, we have to rotate the couplings appropriately,

gL,u,d → U †
L u,dgqUL u,d gR,u,d → U †

R u,dg−u,−dUR u,d (2.16)

The rotation introduces non diagonal couplings which lead to tree level contributions to
∆F = 2 processes. Nevertheless, the rotation matrices are hierarchical, with the hierarchy
set by the same fx that controls the SM fermion hierarchies. The off-diagonal KK gluon
couplings are of order

(gL,q)ij ∼ gs∗fqifqj (gR,u)ij ∼ gs∗f−uif−uj (gR,d)ij ∼ gs∗f−dif−dj (2.17)

The off-diagonal couplings of the quark doublets are suppressed by the ratios of the CKM
matrix elements (recall that fq1 ∼ λ3, fq2 ∼ λ2). Similarly, the off-diagonal couplings of the
singlet quarks are suppressed by hierarchically small entries. This suppression is called the
RS-GIM mechanism. It is enough to suppress most of the dangerous ∆F = 2 operators,
though not all, as we will see in a moment.

Integrating out the KK gluon and applying appropriate Fierz identities we obtain the
effective Hamiltonian:

H =
1

M2
G

[
1

6
gij

L gkl
L (q̄iα

L γµq
j
Lα) (q̄kβ

L γµql
Lβ)− gij

Rgkl
L

(
(q̄iα

R qk
Lα) (q̄lβ

L qj
Rβ)− 1

3
(q̄iα

R ql
Lβ) (q̄kβ

L qj
Rα)

)]

= C1(MG)(q̄iα
L γµq

j
Lα) (q̄kβ

L γµql
Lβ) + C4(MG)(q̄iα

R qk
Lα) (q̄lβ

L qj
Rβ) + C5(MG)(q̄iα

R ql
Lβ) (q̄kβ

L qj
Rα)

where α, β are color indices. The Wilson coefficients of these operators will directly corre-
spond to the C1,4,5 bounded by the model independent constraints from ∆F = 2 processes
by the UTFit collaboration3 in [11], see Table 2. Note, that the most strongly constrained
quantity is the imaginary part of C4

K for the kaon system. Contributions to εK coming from
C4

K are enhanced compared to the ones to C1
K with SM like chirality by

∼ 3

4

(
mK

ms(µL) + md(µL)

)2

η−5
1 (2.18)

where the first factor ≈ 18 is the chiral enhancement of the hadronic matrix element and
η−5

1 ≈ 8 is the relative RGE running [23].
We are ready to estimate the flavor bounds of the RS model. Using the expressions for

the orders of magnitudes for the rotation matrices U we approximately find for the Wilson
coefficient at the TeV scale

CRS
4K ∼

g2
s∗

M2
G

fq1fq2f−d1f−d2 ∼
1

M2
G

g2
s∗

Y 2
∗

2mdms

v2
. (2.19)

2The function γ(c) is a correction to the approximation used in [6] which can be sizable, e.g. γ(−0.4) ≈
0.52, γ(0.5) ≈ 1.16, γ(0.7) ≈ 1.52. In numerical calculations we always use the full overlap integral.

3We are grateful to Luca Silvestrini for discussions about the proper interpretation of the UTFit bounds.
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Four fermi operators

pGB worse than RS: Y* ↔ g* / 2,  MKK>30 TeV 

C4
K ∼ 1

M2
G

g2
s∗
g2
∗

8mdms

v2

1 + m2

m̃2
d
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Low KK scale w/o adding flavor structure

+ live with fine-tuned Yukawas (large radiative 
   corrections)

or

+ bulk Higgs model (not applicable to pGB), 
   push Yukawa to perturbative limit Y*> 6 and
   gs* as small as possible (1-loop matching)  
  
   
   With some tuning MKK ~ 5 TeV possible
   Testable at LHC? Little hierarchy?

Agashe, Azatov, Zhu

MKK >
gs∗
Y ∗

√
2mdms

v
Λ4

Blanke, Buras, Dulling, Gori, AW; Casagrande, 
Goertz, Haisch, Neubert, Pfoh



Low KK scale by adding flavor structure

+ Propose U(1)d x U(1)q  for quark representation 
   with custodial protection of Zbb of pGB
   Key ingredient: two rep.’s for (qu, qd) for QL

Csaki, Falkowski, AW
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Low KK scale by adding flavor structure II

+ Propose U(1)d x U(1)q  for quark representation 
   with custodial protection of Zbb of pGB
   Key ingredient: two rep.’s for (qu, qd) for QL

Csaki, Falkowski, AW
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Low KK scale by adding flavor structure II

+ Propose U(1)d x U(1)q  for quark representation 
   with custodial protection of Zbb of pGB
   Key ingredient: two rep.’s for (qu, qd) for QL

   All flavor violation in up-sector, constraint
   from D-D bar mixing: MKK  > 1 TeV

   U(1)d x U(1)q gauge bosons give additional
   contributions, need them to be almost global
   g5D < 1/50 gQCD.

Csaki, Falkowski, AW



Conclusions

• RS GIM suppresses most of the dangerous 
FCNCs

• Contributions to εK with LR chirality 
typically too large

• Bulk Higgs    mKK >  5  TeV       (best cases)
Brane Higgs  mKK > 11 TeV
pGB Higgs    mKK > 15 TeV

• Additional mechanisms needed, e.g. 
horizontal U(1)’s to allow mKK ~ 1-2 TeV



Low KK scale by adding flavor structure

+ exact GIM structure 
   flavor symmetry in bulk and IR brane, UV
   kinetic terms generate flavor, no explanation
   for fermion masses (likely the only way for
   Higgsless)

+ Minimal flavor protection bulk U(3) flavor  
   symmetry in dR sector (radiatively unstable)

+ 5D MFV only two flavor spurions (YU,YD) 
   Need to align bulk and brane matrices by
   hand. Can we really avoid tuning?

Cacciapaglia, Csaki, Galloway, Marandella,Terning, AW

Santiago

Fitzpatrick, Randall, Perez


